
Understanding and Improving High-Performance I/O
Subsystems

FINAL REPORT
(8/ 1D3- 9/30/96)

Tarek A. El-Ghazawi, Associate Research Professor
and

Gideon Frieder, A. James Clark Professor and Dean

Department of Electrical Engineering and Computer Science
School of Engineering and Applied Science

The George Washington University
Washington, D.C. 20052

E-mail: tarek@seas.gwu.edu
(202)994-5507

StudentsBesearch Assistants:
Mike R. Berry and Sorin Nastea

This research program has been conducted in the framework of the NASA Earth and Space
Science (ESS) evaluations led by Dr. Thomas Sterling. In addition to the many important
research findings for NASA and the prestigious publications, the program has helped
orient@ the doctoral research program of two students towards ywallel inputhutput in
high-performance computing. Further, the experimental results in the case of the MasPar
were very useful and helpful to MasPar with which the P.I. has had many interactions with
the technical management. The contributions of this program are drawn from three
experimental studies conducted on different high-performance computing
testbeds/platforms, and therefore presented in 3 different segments as follows.

1. Evaluating the parallel input/output subsystem of a NASA high-performance
computing testbeds, namely the MasPar MP- 1 and MP-2;
2. Characterizing the physical input/output request patterns for NASA ESS
applications, which used the Beowulf platform; and
3. Dynamic scheduling techniques for hiding VO latency in parallel applications
such as sparse matrix computations. This study also has been conducted on the
Intel Paragon and has also provided an experimental evaluation for the Parallel File
System (PFS) and parallel input/output on the Paragon.

This report is organized as follows. The summary of findings discusses the results of each
of the aforementioned 3 studies. Three appendices, each containing a key scholarly
research paper that details the work in one of the studies are included.

SUMMARY OF FINDINGS

MasPar Evaluations
This work has shown that programmers of UO-intensive scientific applications can tune
their programs to attain good VO performance when using the MasPar. They should be at
least aware of their VO configuration, the specific I/O RAM size and how it is locally
partitioned in an attempt to partition data into files that can fit into the VO RAM. The work
further establishes that system managers are also encouraged to understand the VO resource
requirements of the applications running on their machines and tune the VO RAM
configuration for best performance. In specific, partitioning the VO RAM among disk
reads, disk writes, data processing unit @PU) to front end communications, and
interprocessor communications should be based on an understanding of the most common
needs of the local application domain. Finally, the work has demonstrated that a full

MasPar configuration with MPIOCW and a full I/O RAM has potential for delivering
scdab!e high I,’O prfmmaiice. However h i this to h q p n the YO MM management
should make good attempt to prefetch anticipated data. Further, the VO RAM partitioning
strategy should be more flexible by using cache blocks for different purposes as
dynamically needed by the applications. At the least, fides smaller than the I/O RAM size
should be cacheable. Finaliy, the sustained performance of the disk arrays remains to be

the clear bottleneck and is likely to limit the overall performance of parallel VO systems for
some time to come. For more details on this study, refer to appendix A.

2

Phvsical VO Regllests of ESS lezp licatim
This work has clearly shown that device driver instrumentation has the ability to distinguish
among the different activities in the system, small explicit requests (less than page size),
paging(4KB each in this case), and large objects (such as images). Further, it was shown
ESS codes have high spatial VO access locality, 90% of accesses into 10% of space. On
the other hand, temporal locality was measured as frequency of accesses and observed to
be as high as 6 repeated accesses per second. In general, astrophysics simulation codes
(PPM and Nbody) have similar VO characteristics and have shown very little VO
requirements for the used problem sizes. Wavelet code, however, required a lot of paging
due to the use of many different files for output and scratch pad manipulations, and could
benefit from some tuning to improve data locality. It is therefore advised that a strategy for
file usage and explicit VO requests for this code be developed to do so. On the system
side, Linux tends to allow larger physical requests when more processes are running, by
allocating additional blocks for VO. It is therefore recommended that Linux file caching
should be further investigated and optimized to suite the big variability in the physical
requests of NASA ESS domain. This study was done in collaboration with Mike R. Berry
(GWU).

Dvnamic I/O Sc hedulinP - and PFS Evaluatio nS

Using the worker-manager paradigm, we have introduced a dynamic VO scheduling
algorithm which maximizes VO latency hiding by overlapping with computations at run-
time, and is also capable of balancing the total load (YO and processing). Using sparse
matrix applications as a test case, we have shown empirically that such scheduling can
produce performance gains in excess of 10%. Much higher improvement rates are

expected when the non-zero elements are distributed in a skewed manner in sparse matrix

and was shown to be very satisfactory under these scheduling schemes. In addition, the
Paragon parallel file system (PFS) was evaluated and its various ways of performing
collective input/output were studied. It was shown that the performance of the various calls

CdlS bjat allow Conciilliiii

asynchronous access of processors to their respective blocks, but provide ordering at the
user level performed better than the rest. This study was conducted in collaboration with
Sorin Nastea (GMU) and Ophir Frieder (GMU).

uyy.. annliptinns. -.."I. nae efid (inc!u&fig &/Q) sc&bzity =f such qp!icg$-~fis was sp~&ied

&jjeiib hezV*j. 63 cu"le of riialaging &e file poiniei-jsj.

3

?

LIST OF PUBLICATIONS FROM PROJECT

PAPERS
[11 Mike Berry and Tarek El-Ghazawi. “ Parallel InpuVOutput Characteristics of NASA
Science Applications’*. Proceedings of the International Parallel Processing Symposium
(IPPS’96). IEEE Computer Society Press. Honolulu, April 1996.

[2] Tarek El-Ghazawi. “Characteristics of the MasPar Parallel VO System”
FrontiersP5, IEEE Computer Society, McLean, VA, February 1995.

[3] S. Nastea, 0. Frieder, and T. El-Ghazawi. “ Parallel Input/Output Impact on Sparse
Matrix Compression”. Proceedings of the Data Compression Conference (DCC*96), IEEE
Computer Society Press. Snowbird, April 1996.

TEC HNICAL RE PORTS
[4] Tarek El-Ghazawi. “ VO Performance Characteristics of the MasPar MP-1 Testbed.
CESDIS TR-94- 1 1 1

[5] Tarek El-Ghazawi. “Characteristics of the MasPar Parallel VO System”. CESDIS TR-
94- 129.

[6] M. Berry and T. El-Ghazawi. “An Experimental Study of the I/O Characteristics of
NASA Earth and Space Science Applications*’. CESDIS TR-95-163.

[7] S. Nastea, T. El-Ghazawi, and 0. Frieder. “Parallel Input/Output Issues in Sparse
Matrix Computations”. CESDIS TR-96- 170.

[8] M. Berry md T. El-Ghazawi. “MIPI: Multi-level Ln.s!nmentation of Parallel
Input/Output’*. CESDIS TR-96- 176.

W B B
[9] S. Nastea, T. E!-Ghazawi* kid 0. Frieder. “Paillel Iiipiu’v/oiitput Issues in Sparse
Matrix Computations”. Submitted to IPPS’97.

4

[101 S . Nastea, T. El-Ghazawi, and 0. Frieder. “Parallel Input/Output for Sparse Matrix
Computations’*. Submitted to the Journal of Supercomputing.

[l l] S. Nastea, T. El-Ghazawi, and 0. Frieder. “Impact of Data Skewness on the
Performance of Parallel Sparse Matrix Computations**. Submitted to the IEEE Transactions
on Parallel and Distributed Systems.

5

APPENDIX A:

MASPAR MP=1 AND MP-2 I/O
EVALUATIONS

.

r
Appeared in the IEEE CS Frontiers of the Massively Parallel Computations Proceedings, February I995

Characteristics of the MasPar Parallel I/O System

Tarek A. El-Ghazawil

Department of Electrical Engineering and Computer Science
The George Washington University

Washington, D.C. 20052
tarek@seas.gwu.edu

Abstract

Input/output speed continues to present a performance bottleneck for high-performance
computing systems. This is because technology improves processor speed, memory
speed and capacity, and disk capacity at a much higher-rate. Developments in VO
architecture have been attempting to reduce this performance gap. The MasPar VO
architecture includes many interesting features. This work presents an experimental study
of the dynamic characteristics of the MasPar parallel YO. Performance measurements
were collected and compared for the MasPar MP-1 and MP-2 testbeds at NASA GSFC.
The results have revealed many strengths as well as areas for potential improvements and
are helpful to software developers, systems managers, and system designers.

1. Introduction

This study is aimed at the experimental performance evaluation of the MasPar VO subsystem. Many VO
benchmarks have been developed and used by researchers for such investigations. A representative set of
them is discussed here. These benchmarks can be divided into two main categories: application benchmarks
and synthetic benchmarks. Selecting one over the other depends on the goals of the evaluation study. This
is because application benchmarks are unique in providing performance results that are understandable to
application-domain experts. Meanwhile, synthetic benchmarks (part~cularly those that are based on
parameterized workload models [Jain91]) have the potential for providing insightful understanding of the
architectural characteristics of the underlying VO subsystem.

Among the VO application benchmarks are Andrew [Howard88], TPC-B[TPCB90], and Sdet
[Gaede81,Gaede82]. Andrew is more of a file system benchmark. As a workload, it copies a file directcry
hierarchy, then reads and compiles the new copy. Clearly, much of this work is not necessarily YO.
TPC-B [TPCB90] is a transaction processing benchmark aimed at evaluating machines running database
systems in a banking environment. Despite being I/O intensive, TPC-B takes into account database
software. The workload generates, using simulated customer random requests, debit-credit transactions to
read and update account, branch, and teller balances. Sdet is another VO benchmark which is produced by
the System Performance Evaluation Cooperative (SPEC). SPEC produces independent standard benchmarks
[Scott 901 and it is well known for its CPU performance benchmark, SPEC Release 1.0. Sdet is a part of
their System Development Multitasking (SDM) suite. The workload is based on softwaredevelopment
environment including text editing and compiling.

Many synthetic VO benchmarks were also developed. The list includes IOStone [park90],
LADDIS INelson921, and Willy [Chen92]. IOStone generates request patterns that approximate locality
properties. IOStone, however, does not consider concurrency. All requests are generated using a single
process. LADDIS, on the other hand, is a multi-vendor benchmark intended to evaluate ClienVServer
Network File Systems (NFS) and is actually based on NFSStone [Shein89]. Willy, however, represents a
good step on the right direction. Willy is based on a parametrized workload model and allows for gaining
architectural insight from evaluations. It is described [Chen92] as self-scaled and predictive. Scaling, in the
coiitext of the airhi , refers to chailging orie workioad parameter whiie fixing the rest. Prediction refers to
the ability to predict the performance under workloads that were not actually used, but should be within

'This work is supported by NASA HPCC Program for Basic Research through
CESDIS University Program in High-Performance Computing, grant ## 5 5 5 5 - 18

1

I/O Router,
Up to1024 MB/S
(1 wireP.E. Clus
Up to 1024)

e

4x4 P.E. Cluster

(Up to 16K, 128x128),

Wrap-Around X-Net

...
Front-End
(UNIX Subsystem)

Array Control
Unit (Acu4-1

7-

IORAM I

I/O Devices B + F i s k Array (RAID 3) VME Bus

- - - - - - - - -
1/0 Subsystem

Legend:

Standard

- - - Optional

Figure1 . The MasPar Parallel Input/Output Architecture

10%-15% of previously used workloads. Willy mainly generates workloads for workstations ad
multiprocessor systems with a few number of processors.

Since the goal of this study is to explore the characteristics of the MasPar pardlel VO subsystem,
synthetic benchmarking was used to accomplish that in a massively parallel SIMD architecture. The
workloads generated were, therefore, designed to isolate the behaviors of the PEs-to-1/0 communication
channel speed, the VO cache management, and the disk array. In that sense, the workloads generated here are
cioseiy reiatd to hose produced by Wiiiy.

This paper is organized as follows. Section 2 discusses the MasPar general architecture, while the
two main VO subsystem configuration alternatives are discussed in section 3. Sections 4 and 5 present the
experiments as well as the experimental results, for the MasPar MP-1 and MP-2 respectively. Conclusions
and general remarks are given in Section 6.

2

2. The MasPar Architecture

Maspar computer corporation currently produces two families of massively parallel-processor
computers, namely the Mp-1 and the MP-2. Both systems are essentially similar, except that the second
generation (MP-2) uses 32-bit RISC processors instead of the 4-bit processors used in MP-1. The W a r
MP-1 (MP-2) is a SIMD machine with an array of up to 16K processing elements (PES), operating under
the control of a central array control unit (ACU), see figure 1. The processors are interconnected via the X-
net into a 2D mesh with diagonal and toroidal connections. In addition, a multistage interconnection
network called the global router (GR) uses circuit switching for fast point-to-point and permutation
transactions between distant processors. A data broadcasting facility is also provided between the ACU and
the PE. Every 4x4 neighboring PES form a cluster which shares a serial connection into the global router.
Using these shared wires, array VO is performed via the global router, which is directly connected to the YO
RAM as shown in figure 1. The number of these wires, thus, grows as the number of PES providing
potential for scalable ID bandwidth. Data is striped across the MasPar disk array (MPDA), which uses a
RAID-3 configuration, typically with two optional parity disks and one hot standby. For more information
on the MasPar, the reader can consult the MasPar Rfmces cited at the end of this study
[Blank9Ol~MasPa192l[Nichols90].

3. MPIOCTM Versus the PVME YO Configurations

Based on the I/O structure, the MasPar computers can be divided into two categories: the MasPar VO
channel (MPIOCTM) configuration and the parallel VME (PVME) configuration. It should be noted,
however, that the two configurations are not mutually exclusive and they coexist in the MPIOCTM
configurations. The PVME, however, is the standard MasPar I/O subsystem and has no MPIOCTM. It
should be noted that MasPar 40 subsystem architecture is the same for both the MP-1 and the MP-2 series.

3.1 The PVME YO Subsystem Configuration
PVME, or parallel VME, is actually the MasPar name for the VO controller, a VME bus, and a limited
amount (8 MB) of ID RAM. The PVME 40 configuration is the MasPar standard I/O subsystem and it
includes all I/O components shown in solid lines in figure 1. The PVME configuration, therefore, is the
most common I/O subsystem on MasPar computers.

3.2 The MPIOCTM Configuration
This is the more expensive configuration and, thus, the one which has the potential to offer the higher I/O
bandwidth due to the high speed MasPar channel, MPIOCTM, shown in dotted lines in figure 1. Disk
controllers interface directly to the channel. A small fraction of MasPar installations have MPIOCW-
based 1/0 subsystems. Examples are the the current MasPar facility at NASA GSFC and the installations
at Lockheed and Lawrence Berkeley Labs. The I/O controller (IOCTLR) provides an 8 Mbytes of I/O RAM
connected directly to 64 wires from the global router, as was the case in the PVME. Optional I/O RAMS
can be added to the MpIOCm using either 32 Mbyte or 128 Mbyte modules. All memory is Error Code
Correction (ECC)-protected. Each additional VO RAM, up to a total of four, connects to a different set of
256 wires of the global router, in full PE configurations of 16K PES. More 1/0 RAM modules, however,
can be added in parallel for a total of 1 Gbyte of 1/0 RAM at most[MasPa192]. The MPIOCTM is
functionally similar to a HIPPI channel with 64 bit data bus and can transfer data up to a maximum rate of
200 MB/Sec.

While the number of links from the PE array to the 1/0 subsystem scales with the size of the array
providing up to 1024 wires for the 16K processor system, the 1/0 RAM size can grow up to 1 Gbytes.
However, since each of the 128 (32) Mbyte modules is linked by 256 wires to the I/O-Global Router link

3

0 a!
!?
m
I 40
v

30 2
3

m

U
2 20

10

PES = 128x128, Reads

I - File Size = 2 MB
File Size = 10 MB

a
- - -
v v v

I I I I I

0 200 400 600 800 1000 1200
Transfer Block Size (Bytes)

Figure 2. Effects of the transfer block size using the full MP-1 array

(1024 wires), we believe that an MPIOCW with .5 Gbyte made out of 128 Mbyte modules has the
potential for the best scalability characteristics per dollar. However, more VO RAM still means more fies
(or bigger files) in the cache and thus better I/O performance.

3.3. Scope and Methodology of this Study

This work was conducted using two case study configurations at NASA GSFC. The first is a PVME
configured MP-1 which was used to generate the results in section 4. Last Spring, this installation was
upgraded to an MPIOC configured MP-2, which was used to generate the results in section 5. These will
be referred to as the MP-1 and the MP-2 in the rest of this paper for simplicity. The MP-1 had 16K PES
and a disk array model DA3016 with 16 disks m g e d into two banks, two parity disks, and one hot
standby providing a total capacity of 11 GB. The 1/0 RAM was limited to the 8h4B supplied by the
IOCTLR. The MasPar published peak bandwidth for the PVME is 16 MB/Sec. In the PVME
configmtions, only 64 wires are used to connect the PE array to I/O system through the global router,
regardless of the number of PES in the array.

The MP-2 upgrade has also 16K PES and equipped with an VO channel (MPIOC) and a 32 Mbyte
YO RAM module. This implies that 256 wires of the global router are connecting the PE array to the
MPIOC. Two RAID-3 disk arrays (type DK516-15) are also included, each of which has 8 disks and
delivers a MasPar published sustained performance of 15 Mbytes/sec.

Wall clock time was used to time all measured activities. Unless otherwise is stated,
measurements were filtered to remove any unusual observations. Filtering was accomplished by taking the
average of an interval of m observations. This process was repealed n times and the median of these
averages was used to represent the observation. This has also given the cache the opportunity to warm up
and augment its performance into the measurements, for files of sizes that fit into the cache. Files of sizes
greater than that were not able to take advantage of the IORAM. In each experiment, files that much
smaller than the IORAM size as well as files that are much larger than the IORAM were used to repmxnt
the en& span of performance observations that one can get out of scientific sequential workloads.
Measurements were collected using parallel read and write system calls. Therefore, this study reflects the
performance as seen through the MasPar file system (MPFS).

In the context of this work, and unless otherwise is stated, the terms VO RAM, cache, disk cache,
and L'O cache indicate the solid state memory interfacing the ii0 subsystem to h e iviasPar PE array through
the global router.

4

8

4. Experimental

4 0 -
0

??
m s

30-

5
3
0 20 -
U .-
c
0
m

10 -

I

01

Measurements from the MP-1 Case Study

PES = 64 x 64, Read

File Size = 2 MB
File Size = 10 MB -

J

I

I I I I I

0 200 400 600 800 1000 1200
Transfer Block Size (Bytes)

Figure 3. Effects of transfer block size using 64x64 MP-1 PES

The designed experiments were intended to study the dynamic properties of the MasPar I/O system. In all
experiments, the used metric was the bandwidth reported in MB/Sec. Workload was generated by changing
a number of parallel 1/0 request attributes. Parameters that were varied in these experiments include:
number of PES, number of bytes to be transferred by each PE, the file size, the type of I/O operation (read,
write, or read/write), and the number of active files. Generated accesses were sequential which is the case in
the majority of scientific applications [Millefll].

4.1. Effects of Transfer Block Size

The experiment of figure 2 is intended to study the effect of the transfer sizes on the performance, with the
YO RAM warmed up. All 16k PES are used. Performance using the 2 MByte file is far better than that of
the 10 Mbyte, which suggests that while the 2 Mbyte file seem to fit into the 1/0 RAM, the 10 Mbyte far
exceeds the size to the 1/0 RAM. The 2 Mbyte file shows an I/O bandwidth peak of about 42 Mbytes/Sec,
when the transfer sizes were kept at 64 byte per PE.
Figure 3, however, reports the results of a similar experiment, except that only a grid of 64x64 (4K) PES is
used. Graph is similar to previous one except that the peak is smaller and it occurs at a transfer size of 128
byte per PE, or a total transfer size of 512 Kbyte. Since the total transfer size in the previous case was 1
Mbyte, the peak was expected here at 256 byte per PE. This suggests that either: (1) the link scales down
with the lower number of processors; or (2) the processors or their memories are not fast enough. The first
possibility is excluded for PVME since the link between the PE and the I/O subsystem is fixed at 64 wires
(MBytes per second). Thus, it seems that the limiting factor here was the processors' local memories speed.
Comparing the optimal transfer size and the peak performance in this case and the previous one, leads to
believe that the MasPar possess favorable scalability characteristics that should be further studied.

4.2. Dynamic Behaviors of I/O Caches

Dynamic cache size can be affected by the specifics of the implementation. The experiments in this
section are designed to focus on the dynamic cache attributes such as the effective read and write cache sizes,
as well as prefetching and write-behinds.

4.2.1 Effective Cache Sizes

5

50
0
0 PES = 128x128, Reads 9 m
3i 40-

Transfer Block = 32 - Transfer Block = 64

I Transfer Block = 128 - Transfer Block = 256

I

I

v

L
30- 2

3

0 20 - m

Q
C

0 2 4 6 8 10
File Size (MB)

Figure 4. Effective I/O Read Cache on the PVME Configured MP-1

Figure 4 presents the results of the first experiment in this group, which investigates the effective I/O cache
read size. The transfer size of 64 bytes per PE offers the best match for the 16K PE. Regardless of the used
transfer sizes, performance degrades rapidly when file sizes exceed the 4 Mbyte boundary which indicates
that the effective read cache size is 4 Mbyte.

n
0
0

9
m

14
Block Size = 32

12 __t_ Blocksize =64 - Block Size =128
9 Block Size = 256 10

8

6
0 2 4 6 8 1 0

File Size (MB)

Figure 5. Effective 110 Write Cache on the PVME Configured MP-1

The write counterpart on the previous experiment is reported in figure 5. Results are very similar to those
of the read case with a few exceptions. When the transfer size is big enough to result in an overall transfer
size that exceeds the file size. some processors will have to remain idle and the overall performance will
degrade. Tis resulted in an early performance degmdahon in the case of 128 and 256 byte transfers. This
situation does not arise in the reads, where the transferred bytes are distributed over all enabled processors.
Furthermore, performance degrades when file sizes exceed the 3 Mbyte limit. This indicates that the cache
write size is 3 Mbytes. The 4 Mbyte effective read cache size and the 3 Mbyte effective write size were due
to the system set up of the 8 Mbyte I/O RAM. The I/O RAM can be partitioned into buffers that are to

6

enhance disk reads. disk writes, processor a m y to front end communications, and processor to processor
communications. At the time of testing, the UO R A M was configured to set up 4 Mbyte for disk reads, 3

-_ 5 40 -
I
5 30 -
0
3

20-
m

U

-
Q

10 -

50
PES = 128 xl28, Reads, Mode = R/W h

0
Q)
rn

I
Block Size = 32 - Block Size = 64
Block Size = 128 - Block Size = 256

I

o f I I I I I
0 2 4 6 8 1 0

File Size (ME)

Figure 6. Effect of Read/Write Mode on Reads

Mbyte for disk writes, and 1 Mbyte for communications with the front end [Busse93]. Finally, the
bandwidth for larger files that can not fit into the cache is slightly higher than the bandwidth of similar file
sizes in the case of read. This is mainly due to the write-behind which allows the executing process to
write to the UO RAM. Writing to the disk proceeds later asynchronous of the processing.

Since different cache blocks seem to be used for readable and writeable files, it became of interests to see the
effect of opening a file with a read/write mode on read operations. The experiment of figure 6 examines this
behavior. Performance of reads in this case falls between the read and the write performance.

4.2.2 File Prefetching
Individual measurements were collected with and without flushing the UO RAM in between. It was found
that the only form prefetching is to leave files in the cache for future references once they are read, provided
the file in question fits into the allocated part of the UO RAM. This is done even after the file is closed by
the application. There was no indication from our measurements that a part of a file is cached if the entire
file size is too big to fit into the cache.

4.3. 110 Scalability
In our context, scalability refers to the ability of the UO bandwidth to increase as the number of processors
participating in VO activities grow. The experiment of figure 7, was designed to study the scalability
characteristics of the UO subsystem. The size of the system, no. of PES, under study is changed here by
changing the active set enabling only a subset of processors. The X-axis represents the dimensionally "n"
of the enabled "nxn" submesh. The system exhibits good UO scalability as long as files fit into the cache.
Spikes of unusually high performance were noticed at 32x32, 64x64. 96x96, and 128x128 processor
subsystems. These subsystems are all multiples of 32x32 (1 K processors) which suggests that optimal
performance is reached when the used processors are multiples of lk. The reason for this is the fixed YO-
Roiiki Biik of 64 wires in the PVbE configurriiioii. "necaii that each one of iliese wires clii coanect, via
the global router, to a cluster of 16 processors. Thus, the 64 wires can connect to a 1K partition of the
processor array. Therefore, when a multiple of 1K processors are performing I/O, all wires of the link m
used up all the time providing the potential for maximum bandwidth. The 96x96 processor case, although
meets the criteria for high performance, does not show as much improvement in performance as the other
three points. This behavior remains hard to explain. This, however, is the only case where this multiple of

7

A

0 50

'2 m
I 4O

u

Y

5 30
2
L

m
2 20

File Size = 2 MB
File Size = 10 MB

0 - 10

0
150 0 50 l o o Sqrt(PEs)

Figure 7. Bandwidth Scalability in the MP-l/PVME with the increase in PES I/O

1K is not a power of two, which might have resulted in some mismatching with other internal design or
packaging properties. Outside the cache, performance is degraded and the bandwidth does not seem to scale
with the increase in the number of processors involved in the VO.

5. MP-2 Case Study Measurements

A representative set of measurements were obtained once the MP-1 was upgraded to an MP-2 with MPIOC
and I/O RAM. The measurements were designed to highlight the important aspects of the upgrade.
Discovering the effective cache sizes and assessing the scalabiltiy were clear targets to see how the
configuration relates to its predecessor and how the performance of the MPIOC relates to that of the standard
PVME. The effective read cache size measurements are shown in figure 8. The performance of mds drops
significantly when file sizes exceed 12 Mbytes. Thus, the effective cache size is 12 Mbytes for reads.
Transfer blocks of sizes 64 remain to do well but their good performance could also be obtained by using
blocks of 128 bytes instead. The 12 M byte was also found to be the entire allocation for the MasPar file
system (MPFS) out of the used 32 Mbyte I/O RAM. When file sizes exceed the 12 Mbyte limit, the
sustained disk array speed is about 10 Mbyte/ Sec which is 33% less than the published rate. However, the
published rate of 15 Mbyte/Sec is achievable with very large files as will be shown later.

Effective write cache size, as seen in figure 9, remains at 3 Mbyte even with the increased caching
space due to the VO RAM module. Furthermore, the write performance is about one order of magnitude
worse than that of the read.

Prefetching is not different from the first case study and is still following the same simple stmtegy
of leaving a previously read file in the cache. Prefetching on this system was again studied by collecting
individual (non averaged) measurements with and without cache flushing in between.

Scalabiltiy measurements were coilected for two files of sizes IO Mbyte and i00 Mbyte &
parallel read operations and plotted in figure 10. This figure resembles figure 7 in the general form but now
with much greater values. For the 100 Mbyte case, the system runs at the speed of the disk m y which
now demonstrates a sustained performance equal the published 15 Mbyte/Sec. The 10 Mbyte file displays a
great positive spike at 128x128 PES. This is consistent with figure 7 and the fact that in this new
configuration our VO RAM module provide 256 wires that support 4K PES through the global router.

8

hl
m

II

Y
0

200
PES= 128x128, Reads

I Transfer Block = 32 - Transfer Block = 64
I Transfer Block = 128 - Transfer Block = 256

2 100 m

0
0 10 File Size (MB) 20

Figure 8. Effective Read Cache for the MP-Z/MPIOC Case Study

30
PES= 128x128, Writes

Y Transfer Block = 32 - Transfer Block = 64
I Transfer Block = 128

x - Transfer Block = 256

m

t 10

0
0 -
*
(Ip
E 0 " 201

File Size(MB) I
I I

0 10 20

Figure 9. Effective Write Cache for the MP-2/MPIOC Case Study

9

I s

T
Transfer Block Size = 64, Reads

L 100
ii

File Size = 10M - File Size = lOOM

0
0 50 O0 File size(MB) 50

Figure 10. 1 /0 Scalability for the MP-2/MPIOC configuration

Thus, positive spikes are expected at dimensionalities that provide multiples of 4K, namely 64x64 and
128x128. No such spike was observed however at 64x64. The negative spikes are basically due to the
systems activities at the time of the measurements.

6. Conclusions

The W a r has been known for its cost efficiency, ease of use, and computational performance. This work
has shown that programmers of VO-intensive scientific applications can tune their programs to attain good
VO performance when using the MasPar. They should be at least aware of their VO configuration, the
specific VO RAM size and how it is locally partitioned in an attempt to partition data into files that can fit
into the ID RAM. The work further establishes that system managers are also enmuraged to understand
the VO resource requirements of the applications running on their machines and tune the VO RAM
configuration for best performance. In specific, partitioning the VO RAM among disk reads, disk writes,
data processing unit (DPU) to front end communications, and interprocessor communications should be
based on an understanding of the most common needs of the local application domain. Finally, the work
has demonstrated that a full MasPar configuration with MPIOCTM and a full VO RAM has potential for
delivering scalable high VO performance. However for this to happen the VO RAM management should
make good attempt to prefetch anticipated data. Further, the VO RAM partitioning strategy should be more
flexible by using cache blocks for different purposes as dynamically needed by the applications. At the
least, files smaller than the VO RAM size should be cacheable. Finally, the sustained performance of the
disk arrays remains to be the clear bottleneck and is likely to limit the overall performance of parallel I/O
systems for some time to come.

References
[Anon851 Anon et al., "A Measure of Transaction Processing Power", Datamation, April 1985, 112-1 18.
[Blank901 Tom Blank, "The MasPar MP-1 Architecture", Proc. of the IEEE Compcon, Feb. 1990.
[Busse931 T. Busse, Personal Communications, MasPar Co., August 1993.
[Cnenw r. u e n , Inpuy'Output Performance Evaiuation: Self-Scaling Benchmarks, Predicted Performance,
Technical Report, University of California at Berkeley, Rep. No. UCBKSD-92-7 14, November 1992.
[Jain911 R. Jain, The Art of Comp. Sys. Performance Analysis, John Wiley, NY:1991.
[GaedeHI S. Gaede, "Tools for Research in Computer Workload Characterization", Experimental Comp.
Performance and Evaluation, 1981. D. Ferrari and M. Spadoni, eds.

A-7 - -.

10

[Gaede82] S. Gaede, "A Scaling Technique for Comparing Interactive System Capacities". 13th Int. Conf.
on Management and Performance Evaluation of Computer Systems, 1982.6247.
[Grand921 Grand Challenges 1993: High Performance Computing and Communications, A Report by the
Committee on Physical, Mathematical, and Engineering Sciences, Federal Coordinating Council for
Science, Engineering, and Technology, 1992.
[Howard881 J. H. Howard et al., "Scale and Performance in a Distributed File System", ACM Trans. on
Computer Systems, February 1988.51-81.
[Katz89] R. H. Katz, G. A. Gibson, and D. A. Patterson, "Disk System Architecture for High Performance
Computing", hoc. of the IEEE, Dec.1989, 1842-1858.
[Krystynak93] J. Krystynak and B. Nitzberg, " Performance Characteristics of the iPSC/860 and CM-2 VO
Systems", Roc. of the 7th PPS, April 1993.
[Maspar921 MasPar Technical Summary. MasPar Corporation, November 1992.
WcDonell87] K. J. McDonell, " Taking Performance Evaluation Out of the Stone Age", Proceedings of
the Summer Usenix Technical Conference, Phoenix, June 1987,407-417.
[Mille1911 E. L. Miller and R. H. Katz, "Input/Output Behavior of Supercomputing Applications", Proc. of
SupercomputingP 1,567-576.
melson!X!] B. Nelson, B. Lyon, M. Wittle, and B. Keith, "LADDIS-A Multi-Vendor and Vendor-Neutral
NFS Benchmark",Uniforum Conference, January 1992.
[Nickolls90] The Design of the MasPar MP-1: A Cost Efficient Massively Parallel Computer, Roc. of the
IEEE Compcon, Feb. 1990.
Ipark901 A. Park and J. C. Becker. "IOStone: A Synthetic File System Benchmark", Computer
Architecture News, June 1990,45-52.
Feddy901 A. L. N. Reddy and P. Banerjee, "A Study of YO Behavior of the Perfect Benchmarks on a
Multiprocessor", Roc. of the 17th Int. Syrnp. on Computer Architecture, May 1990,312-321.
[SaavedmBmra89] R. H. Saavedra-Batma, A. J. Smith, and E. Miya, "Machine Characterization Based
on an Abstract High-Level Language Machine," IEEE Trans. Comp., vol. 38, No. 12, Dec. 1989.
[SPEC911 SPEC SDM Release 1.0 Manual, System Perf. Evaluation Cooperative, 1991.
[Shein891 B. Shein, M. Callahan and P. Woodbuy, "NFSStone-- A Network File Server Performance
Benchmark", Proc. of Usenix Summer Tech. Conf.. June 1989,269-275.
[TPCB90] TPC Benchmark B Standard Specification, Transaction Processing Council, August 1990.

1 1

APPENDIX B:

PHYSICAL I/O REQUESTS OF ESS
APPLICATIONS

In Collaboration with Mike Berry (GWU)

An Experimental Study of Inputloutput Characteristics of NASA Earth and Space
Sciences Applications

Michael R. Beny Tarek A. EI-Ghazawi

Department of Electrical Engineering and Computer Science
The George Washington University

Washington, D.C. 20052
{ mrberry,tarek) @seas.gwu.edu

--
Abstract

Parallel inpudoutput (UO) workload characten':arion
studies are necessary to bener understand the factors that
dominate performance. When translared into system
design pnhciples this knowledge can lead to hightr
performancdcost s y s t e m . In this paper we present rhe
expenmend results of an UO workload characteri:arion
sxudy of NASA Earth and Space Sciences (a s)

. applications. Measurements were col!ected using device
driver instrumentation. Baseline mearurements. wirh no
workload. and measurements during regular application
rum. were collected and then analyzed and correlared It
will be shown how the observed disk PO can be identiJied
as block rransfers. page requests. and cdchl, activity. ord
how the ESS applications are characterized by a high
degree of sparial and temporal locaiiy.

1. Introduction

In recent literature, the YO performance bottleneck has
been extensively addressed. It is clear that the current
trends in technology will continue to increase h e
performance gap between processing and YO. However.
the improvement of parallel VO architectures and file
systems can help in reducing this gap. Improving these
mhitecmres. wirh cost-efficient solutions, requires an in-
depth understanding of the VO characteristics and
resource needs of the underlying applications.
Capitalizing on the most common and dominant machine
behaviors thus allows significant performance benefits to
be achieved at relatively low cost. In this paper we
disciiss empirjcal resi;!~ frcm ea: wmkload

This mearch is supported by the a S D l S Univvsity Program in
High-Pcrformana Computing under USRA subconuact 5555 U18.

1063-7133/96 $5.00 0 1996 IEEE
Proceedings of IPPS '96

charactenzatlon study conducted in the NASA EsS
application domain, revealing the important YO workload
characteristics and the underlying factors.

VO workload characterization requires a methodology
and a tool for measuring YO activities. Instrumentation
can be accomplished at one or more system levels,
including application code, If0 libraries, file systems.
device drivers, and hardware monitoring of VO channels
and system bus. Instrumentation of each level can reveal
disparate data.

The workload presented to the YO subsystem is a
combination of requests generated by both the application
and operating system. Therefore. we chose to use device
driver instrumentation of the hard disk sub-system, io
capture both applications and system If0 activities. In
addition. we used a set of experiments designed to aid in
distinguishing the VO behaviors due to the operating
system from those that are directly generated by the
applications. Device driver instrumentation does require
access to the operating system source code. which is
generally hard to acquire from most vendors. Therefore,
the experimental network of workstations (NOW) system,
Beowulf [IJ. at NASA Goddard was selecttd as the
platform for this study largely due to the availability of its
operating system source code. Three typical ESS
applications also from NASA provided the workload.

This paper is organized as follows. Section 2 reviews
some of the related work focusing on recent YO workload
characterization studies conducted in the context of
parallel systems. Section 3 describes the methodology
used including the instrumentation technique,
experiments, measurements and information sought. In
section 4, the experimental results are presented and
discussed. A s u m m q and conclusions are given in
section 5.

74 1

I

2. Related work

There have been several previous studies. both
experimental and theoretical, that have examined the
issue of YO workload characterization. In this section we
describe the related research, highlighting the objectives.
methods, and results of those studies.

The UO behavior of parallelized benchmarks on an
Alliant multiprocessor emulator was examined in (21.
They found the applications exhibited sequential UO
characteristics. YO access rates and patterns were
determined for a Cray YMP in [3] using C library
instrumentation. This work categorized three general
classes of YO access patterns: required (any YO at
program start-up and termination), checkpoint (YO to
Save minimum data for program restart), and data staging
(YO needed when memory requirements are more than
physical memory, e.&. paging). Pasquale and Polyzos in
[4] studied the static and dynamic YO Characteristics of
scientific applications in a production environment on a
Cray YMP. and concluded the intensive YO applications
had a regular access pattern. The architectural
requirements of eight parallel scientific applications were
evaluated on nCube and Touchstone Delta machines in
(51. rh is study described the temporal patterns in VO
accesses and rates. 4 parallel YO modeling and interface
methodology is discussed in [6], along with the parallel
YO requirements observed at the Argonne National Lab.
In [7] system architecture issues concerning parallel YO
on massively parallel processors (MPPs) are discussed.
The need for comprehensive workload chara'cterization
through instrumentation studies of multiple platforms and
applications is emphasized.

In [8] YO workload characteristics were presented for a
parallel file system on an iPSU860 running parallel
scientific applications in a multiprogramming production
environment. File usage and size, read and write request
sizes, request spacing in a file. access patterns, locality.
and design implications for parallel file systems are
presented. In a related study, [9] characterized control-
parallel and data-parallel user-program UO on a CM-5.
These studies of the CHARISMA project comprise a solid
body of work in characterizing a file system's YO
workload requiremenu.

In [lo] the parallel YO workloads of four applications
running on a parallel processor with the Vesta file system
are characterized. This study used six WS 6000's
connected with an SPn network (same network that is
used !EM'S SI)! and SP2 machines) ~ q d ~5: unified
Tracing Environment (UTE) to perform the VO
characterization which showed YO request sizes and
rates, and data sharing characteristics. This study
supported the YO Characterization results concerning

request sizes and rates reponed in [&SI. In I l l] ;he
instrumented versions of three scientific applications with
high YO requirements were run.on an Intel Paragon XP/
S. This study characterized the parallel YO requirements
and access patterns. In [I21 VanderLeest used
instrumented YO library calls, kernel initiated tracing. and
a bus analyzer IO study YO resource contention.

The work in [8,11.12] are the most closely related
efforts to ours. Our work differs from that of these
studies in that we are using device driver instrumentation
instead of YO library instrumentation. The hybrid
instrumentation implemented in [12] is in the form of a
bus analyzer at the lowest level, and library
instrumentation at the high end. That work was not
conducted on parallel systems. nor did it examine
scientific applications with parallel YO.

3. Workload characterization methodology

In this section we discuss the characterization method
and the rationale behind the selections that we made.
These elements include, the objectives of h e study, the
hardware platform selected, the applications used to
provide the workload excitations, the method of
monitoring the VO and collecting the measurements, the
specific experiments that uere performed, the data
collected. and the information generated.

3.1 Objectives

Most VO workload characterization efforts have
focused on measuring explicit YO requests to data files.
ignoring system activities. Therefore, in this work we pay
particular attention to the total workload which is
ultimately presented to the UO subsystem. Such a
workload consists of explicit application YO, pure
systems activities, and system activities generated in
response to the needs of the applications. We especially
recognize the benefit of being able to characterize thjS
total YO workload generated. as well as the elementary
factors that give rise to this overail behavior.
Accordingly we have captured trace file data on all of the
system's iiO acriviry at ihe disk ievei. From the xi~lysis
of this data we characterize the system's UO behavior 10
aid in its understanding and in the development of more
efficient systems.

3.2 Platform

In order to measure the YO activities at the physical
level, we implemented disk drive instrumentation.
Instrumenting disk device drivers required access 10 the

74 2

!

I

1 . .

operating system source code from any target parallel
platform that we considered: Since most such code is
proprietary we found it very difficult to obtain.
Consequently, we decided to use the experimental parallel
testbed, Beowulf [I] , built at NASA Goddard. which uses
the Linux operating system. The prototype Beowulf
system, which we used, is a parallel workstation cluster
with 16 Intel DX-4 100 MHz subsystems, each with 16
MB of RAM, a 500 MB disk drive, and 16 KB of primary
cache, connected with two parallel Ethernet networks. In
addition to the Linux operating system, the Beowulf
system has PVM for inter-processor communication, and
can use PIOUS [13] as a parallel file system for
coordinated VO activities. Since Linux’s GNU licensing
policy allows public access to the source code, we were--
afforded the opportunity to develop and use device dnver
instrumentation. This consideration was a prime
motivator in the selection of this parallel system.

3.3 Applications

Three representative parallel applications were selected
from the NASA ESS domain. These are a piece-wise
parabolic method (PPM) code, a wavelet decomposition
code, and an N-body code. The PPM code is an
astrophysics application that solves Euler’s equations for
compressible gas dynamics on a structured, logically
rectangular grid 114). Our study used four 240x480 grids
per processor. This code has been used primarily for
computational astrophysics simulations, . such as
supernova explosions, non-spherical accretion flows, and
nova outbursts.

Wavelet transformation codes are used extensively at
NASA Goddard for ESS satellite imagery applications
such as image registration and compression, of such
images as from the Landsat-Thematic Mapper [151. The
version of the code we used decomposed a 5 12x5 12 byte
image. N-body simulations have been used to study a
wide variety of dynamic astrophysical systems, ranging
from small clusters of stars to galaxies and the formation
of large-scale structures in the universe. Our N-body
code uses an oct-tree algorithm with 8K particles per
processor, which resuited in 303 miiiion totai paiiclc
interactions [161.

3.4 Instrumentation

The parallel Yo performance data described and
depicted in the following section was coilected using an
inswmented disk device driver running on each of the
workstation nodes. Each workstation’s D E disk device
driver was modified to capture trace data on all YO
activity requested of the hard disk sub-system. The read

and write handlers in the IDE disk device driver were
instrumented to capture the requested level of
instrumentation. All read or write requests sent to the
disk drive generated a trace entry consisting of a time-
stamp, the disk sector number requested, a flag indicating
either a read or write request, and a count of the
remaining VO requests to be processed.

The YO instrumentation traces were buffered by the
kernel message handling facility through the proc
filesystem [I7]. and were eventually written to disk.
Using the proc filesystem allowed the trace data to b e ,
transported from kernel space into user memory in /proc,
wirhout the need to develop and integrate additional
specialized kernel code. Buffering the traces through the
proc filesystem allowed the captured data to be stored
quickly in memory, with the flexibility and ease of
retrieving the data from what appeared to be a regular file
in the proc filesystem. The level of instrumentation was
controlled through the use of an ioctrl call. This allowed
the instrumentation to be turned off and on, without the
need to reboot the cluster with the desired instrumented or
non- instrumented kernel.

3.5 Experiments

The instrumentation was turned on and trace file data
wzs collected for YO requests during four basic
experiments. The first consisted of gathering data while
no user applications were running. This allowed us to
measure the quiescent YO level. with which we could
compare to the YO activity measured while applications
were running and a user induced VO load was present.
The next three experiments involved running each of the
three applications described above, one at a time. These
experiments were intended to reveal the individual
contribution of each application to the overall behavior,
The final experiment was to collect data while all three
applications were running simultaneously. This
experiment created an VO load resulting from a
combination of different applications. to emulate a typical
production environment.

3.6 Metrics

A number of m e h c s were used in characterizing the
VO in his study. including VO request size, the
distribution of requests by disk sectors, and the average
time between consecutive accesses to the same sector.
Spaiial I x d i i y infcm,adm wa developed from the
distribution of requests by sector number, and temporal
locality data was produced from. the measurements of
time elapsed between accesses to a particular sector.

743

i

4. Workload characterization

4.1 Baseline

The fwst part of our study focused on the analysis of
YO activity while no user applications were running.
Figure 1 covers this period of inactivity and shows YO
accesses concentrated around a few sectors. which is
consistent with logging and table lookup activities that are
normally part of routine kernel work occumng all of the
time. These I/O requests can be seen as horizontal lines.
The predominate YO request size observed during this
period is 1KB [IS]. A few instances of small multiples of
1KB requests were also seen. This I K B request size
matches the disk systems block size of IKB, and is
indicative of small YO requests generating YO msfers
of the smallest possible physical request size.

-*I t 8 ; . . a . a ., J ...a ., ...I,. .. . , a . 8 . ,,
. . ' I * mrm

.
0

e)oo 00 OID OD 1 O D D u m r o , 1 f W * m r s o
1 1 1 I" a

Figure 1. VO Requests (baseline)

4.2 Single applications

Piece-wise parabolic method: The YO during this
application is relatively low with no paging activity
occurring while this program is running, except briefly
toward the end. As can seen in Figure 2. the paging
activity is denoted by a 4KB request at approximately 230
seconds from the beginning of the execution time. The
1KE block 2/0 requests are very prevalent. consistent
with kernel activity, low user program YO demand, and
small infrequent requests.
Wavelet: Figure 3 presents the YO activity that was
observed while the wavelet decomposition application
was running. In Figure 3, a frequent request size of ~ K B
can be observed. which indicates a high rate of paging.
m e paging requirements of the wavelet program are due

0 3 I@ E4 300
11- tn -

Figure 2. Request Size (PPM)

to the large program space and image data requirements.
A spike of If0 activity occurs at approximately 50
seconds into the execution. This is generated by the
higher request sizes occumng while the data file is being
read. Requests approaching 16 KB are obsewed during

i i I I

uo loo Ei9 Ir)
11- in lrrd

Figure 3. Request Size (wavelet)

this period, and are a result of the 16 KB cache on
Beowuif. As a stream of data is being read at this point of
execution, cache is repeatedly filled with the new data.
Interference from system activities keep the request size
from reaching and maintaining the full 16 KB cache size.
A lull in the YO activity is the next significant feature of

undenvay. Note that there are few page requeso (at 4KB)
during this period. This is caused by system memoQ'
maintaining the working set of inswctions and data,
without the previous higher need for new data and

.L ulis application. ifidicating h.at k m m p ~ t k d phase is

744

instmctions.
N-body: In Figure 4 the consistent 1 KB block YO is
visible. with more 2 KB requests and a few page swaps
(or 4KB requests) than occumd durjng PPM. The higher
computational requirements of the N-body problem cause
more frequent page faults than PPM, to maintain the
working set, but the overall activity is obviously much
less than that of the wavelet program with its large dam
requests.

OmL.

Emap.

rmr..,*

0 im xo ZD 00 YD OD
11" I"

Figure 4. Request Size (N-Body)

1
'

3.3 Combined applications

Figures 5 and 6 show the resultant YO from running all
three applications simultaneously. The resultant YO
request sizes shown in Figure 5 reflect the simultaneous
demand on the YO by all three applications. The 1 KB

1

2.

0 IOD m m m y . m m
11- u -

Figure 5. Request Site (combined)

Baseline

PPM

Wavelet

requests are maintained throughout this period. with a
much higher occurrence of 4 KB requests. reflecting the
greartr load. The. dramatic increase in request site at
approximately 50 seconds. is primarily due to the image
being read in the wavelet application, but the combined
effect of the applications have driven the total request
sizes much higher than when the applications were run
independently. Request sizes in the 16 KB to 32 KB
range shown in Figure 5 arc attributed to an increased YO
buffer size when the wavelet data file is read.

08 iOG% 0.9 1782

4% 96% 1.4 358

49% 51% 294.5 88342

Lu-

... a .L...L .--. -IU--.C.. -..e-. -...

. I * . -. .
- * ..

Figure 6. VO Requests (combined)

Figure 6 also shows a correspondingly higher amount
of request activity, primarily in the lower sector numbers.
The clumping of requests seen in Figure 6 matches the
periods of greater request activity seen in Figure 5. The
distribution of YO requests between reads and writes that
occurred during each application (average per disk) and
during 2000 seconds of baseline inactivity is shown in
Table 1. System and instrumentation logging account for
h e almost exclusive amount of writes that was measured

I 1 I I

Table 1. UO Requesb

745

A

in all but the wavelet experiment (Note: YO
instrumentation did not measurably change the execution
time of any of the applications.) The difference in the
relative percentages between reads and writes for the
wavelet application is because this program is the only one
that has significant input data, in this case from its
imagery data file. n e overall low request activity in the
PPM and N-body applications. and the low percentage of
reads, is a result of both of these programs being
simulations with no input data, with and only short
statistical summaries being written.

0.9

0.4

0.;

0.2 j~ 0.1

0 1 2 3 4 5 I 1 8 9 10 3
.CM (- d lD00

Figure 7. Spatial Locality (combined)

Figure 7 shows the spatial locality as a percentage of
UO requests occurring within a band of seciors. In this
figure, sectors have been combined into bands of lOOK
each. The higher incidence of UO activity in the lower

0 lllxm rmgo umm - IrQ 1.-

Figure 8. Temporal Locality (combined)
ktp m d m d di*

sector numbers is caused by the user programs and data.
swap file space, and kernel file data mainly residing in
these locations on the disk. Figure 8 shows temparal
locality as a characterization derived from data also
collected while running the combined application
experiment. Temporal locality is expressed as the
frequency of accesses (per second) to the same sector on
disk. These access frequencies were averaged over the
700 seconds required to run the combined experiment.
Figure 8 also shows most of the YO occurred at the lower
sector numbers. The most frequently accessed sector
location was approximately 45000, and the next most
fiequent at just under 400000.

5. Summary and conclusions

This study has aimed at characterizing the parallel UO
workload generated by some of NASA's ESS
applications. This was accomplished by instrumenting
the disk device driver and capturing vace information on
the total load of the emulated production environment as
observed by the UO subsystem. Experiments were
conducted to reveal the elementary conuibutions of the
individual applications, system activities, and the
combined characteristics of a multiprogramming load
with several applications running concurrently.

The proposed instrumentation technique has been able
to identify different I/O activities based on the observed
request sizes. that fell into three primary categories. First,
small requests which were observed as 1KB physical
requests. Second, paging activities which were observed
as 4 KB requests. Third, large YO requests distinguished
by sizes approaching multiples of 16 KB, indicating most
of the 16 KB cache data was being replaced.

UO attributes and request patterns were monitored and
characterized. It was shown that in the absence of
applications, system activities of small request sizes
appear at low and high sector numbers due to system
logging. Intensive data set manipulation applications
such as the wavelet image processing code were
distinguished with heavy paging in the beginning of the
application to build the working set of the code and large
data silZicitires. x well a .;*.it$ Iiiii-ge exp!ici: request sites
approaching multiple cache block size, when the image
data was read. Limited paging activities still occurred to
maintain the working set, followed by a heavier activity
toward the end of the application run. Both N-body and
PPM are simulation codes, and have shown behaviors that
are simiiar. in generai. ~ e s e two codes have v e q iimited
YO activities, most of which is implicit. The explicit Yo
is due to writing the final simulation results into output
files. A very small amount of paging activity was

With the ability IO closely observe I/O activities, the

. .

746

I

observed as a result of processing in these applications.
In addition to the request size characteristics, the ESS

applications' VO exhibited substantial locality propenjes.
The spatial locality of the combined workload, almost
follows the 10-90 rule. Temporal locality analysis
revealed some hot spots on the disk. Also, a reladvely
high ratio of writes, as compared to other domain
applications, were observed in the ESS applicadons.
particularly in wavelet. Our next step is to integrate these
data into a parameter set that can be used for system
design and tuning of parallel systems and applications.

Acknowledgments

The authors would like to thank Terrence Pr2n for
encouraging and supporting this research at its inception.
We also thank Thomas Sterling for his suppon and
valuable input; Don Becker for his insahable
explanations of Linux; Chance Rescheke and Dan Ridge
for their assistance with the Beowulf NOW; and Charlie
Packer, Udaya Ranawake. Kevin Olson and Jacqueline
Lemoigne for their help with the NASA ESS applications.

References

[I] Sterling, T.. Bccker. D.. Savarese, D.. Dohand, J..
Ranawake. U.. Packer, C. Beowulf: A Parallel Workstrtion for
Scientific Computation. In h o c . of rhe 1995 Jnremc:iona1
Conference on Parallel Processing. Vol 1. pp. 1!-14, 1995.

[7] Reddy. A.. Banejee. P. A Study.of YO Behavior of
Perfect Benchmarks on a Multiprocessor. Compu:er
Archirecrure News. 18(2): 3 12-321, June 1990.

[3) Miller, E., Katz, R. Inpulloutput Behavior of
Supercomputing Applications. In Proc. of Supercomputing '91.
pp. ~67-5%. NOV 1991.

[4] Pasquale. B.. Polyzos. G. A Static Analysis of YO
Characteristics of Scientific Applications in a Production Work-
load. In Proc. ofSupercompuring '93, pp. 388-397. Nov 1993.

[5] Cypher. R.. Ho. A.. Konstantinidou. S.. Messina. P.
Architectural Requirements of Parallel Scientific Applications
with Explicit Communication. Compiiier Ai&i:e::urc .Vewz.
21(2): 2-13. June 1993.

[6] Galbreath, N.. Gropp. W.. Lcvine, D. Applications-
Driven Parallel yo. In Proc. of Supercomputing '93, pp. 462-
471. Nov 1993.

[8] Kotz, D.. Nieuwejaar. N. File-System Workload on a
Scientific Multiprocessor. IEEE Parallel & Distributed
Technology, 3(1): 51-60, Spring 1995.

(91 Purakayastha. A.. Ellis, 6.. Kotz, D.. Nieuwejaar, N., Best,
M. Characterizing Parallel File-access Patterns on a Large-scale
Multiprocessor. In Proc. of t he 9th Inrernational Parallel
Processing Symposium. pp. 165-172, April 1995.

[IO] Baylor. S.. Wu, C. Parallel YO Workload Characteristics
using Vesta. In Proc: of rhe 3rd Annul Workshop on lnpud
Ourpur in Parallel and Disrrib. Sysrems. pp. 16-29, April 1995.

[I I] Crandall. P.. Aydt, R., Chien. A.. Reed..D. Inpulloutput
Characteristics of Scalable Parallel Applications. In Proc. of
Supercompuring '95. pp. 613-619, December 1995.

[I21 Vander Leest. S. Measurement and Evaluation of
Multimedia YO Performance. Ph.D. dissenation. Department of
Electrical and Computer Engineering, University of Illinois
Urbana-Champaign, 1995.

[I31 Moyer, S.. Sunderam. V. PIOUS: A Scalable Parallel YO
System for Distributed Computing Environments. In Proc. of
rhe Scalable High-Pe&vmmce Cornpuling Conference., pp. 71-
78. 1994.

[14] Fryxell. B., Taam. R., Numerical Simulations of Non-
Axisymmetnc Accretion ROW. Astrophysical Journal. 335: 862-
880.1988.

[151 El-Ghazawi. T., Le Moigne. J. Multi-Resoiution Wa\det
Decomposition n the MasPar Massively Parallel System.
CESDIS Technical Report. TR-94-122.

[16) Olson. K.. Dorband, J. An Implementation of a.Tree Code
on a SIMD Parallel Computer. Astrophysical Journul
Supplement Series. 94: 117-1 25. September 1994.

[I71 Johnson. M.. The Linux Kernel Hacker's Guide. Chapel
Hill. NC. http://sunsite.unc.edu/mdwAinux.html, 1993.

[IS] Berry. M.. El-Ghazawi. T. An Experimental Study of
InpuVOutput Characteristics of NASA Earth and Space Sciences
Applications. CESDIS Technical Report. TR-95-I63.

(71 del Rosario. 1.. Choudhw, A. High-Performance YO for
Massively Parallel Computers: Problems and Prospects. IEEE
Computer. 27(3): pp. 59-68. MU 94.

747

Y

APPENDIX C:

DYNAMIC I/O SCHEDULING AND PFS
EVALUATIONS

In Collaboration with Sorin Nastea (GMU)
and

Ophir Frieder (GMU)

LLl:Ttq t; s'w zu/L \%C\b hJ /-&r-WT
Parallel Input/Output for
Sparse Matrix Computations

t Sorin G. Nastea
Department of Computer Science
George Mason University
Faufax, Virginia, 22030-4444
E-mail: snastea@cs.gmu.edu
Phone: (703) 993-1536

Tarek El-GhazawiS
Department of Electrical Engin ering and C
The George Washmgton University
Washmgton DC, 20052
E-mail: tarek@seas.gwu.edu
Phone: (202) 994-5507

Ophir Friedert
Department of Computer Science
George Mason University
F a i ~ w Virgmia, 22030-4444
E-mail: oph.u@cs.gmu.edu
Phone: (703) 993-1 540

mputer Science

This work is supported in part by the National Science Foundation under contract number IRI-
9357785.

t

'Supported by CESDISNSRA subcontract number 5555- 18

Abstract

Sparse matrix computations have many important industrial applications and are characterized

by large volumes of data. Due to the lagging input/output (VO) technology, compared to processor

technology, the negative impact of inputloutput could be challenging to the overall performance of

such applications. In this work, we empirically investigate the performance of typical parallel file

system options for performing parallel VO operations m sparse matrix applications and select the best

suited one for this application. We introduce a dynamic scheduling method to M e r hide I/O

latency. We also investigate the impact of parallel VO on the overall performance of sparse-matrix

vector multiplications.

Our experimental results using the htel Paragon and standard matrix data will show that, by

using our technique, tangible performance gains can be attained beyond what parallel I/O system calls

alone may offer. For some data sets, it is possible to significantly ease the I/O bottleneck through

latency hiding and amortization over increased computations to a limit that can preserve the scalability

characteristics of the computational activities. The results will also empirically shed some light on

the pros and cons associated with the Merent parallel file system calls supported by modern parallel

systems, such as the htel Paragon.

1. Introduction

A matrix is cded sparse i fa relatively d number of the matrix elements are non-zero [121.

Sparse matrices are very efficient for accommodating a variety of applications, including engineering,

medical, and military data. Commonly performed matrix computations include: eigenvalues and

eigenvectors computations, matrix multiplication, or solving systems of linear equations. Cheung and

1

Reeves [l] categorize Sparse Matrix Applications (SMA) into three hdamental classes: 1) SMA

with regular sparse patterns, m which matrices have a regular structure, such as banded, trian-dar,

or (block) diagonal; 2) SMA with random sparse patterns; 3) Dense applications with sparse

computation, in which, although dense matrices are used, the problem deals only with a small,

limited part of the data. We wiIl focus on the second category, considered as the most general case.

A number of sparse matrix compression formats exist. It is generally acknowledged that it is more

efficient to deal with matrices in the compressed format for at least two reasons: 1) saving disk

storage and memory space; and 2) saving execution time, as only non-zero elements participate in

computations.

We empirically investigate the performance of typical parallel file system options for

performing parallel VO operations in sparse matrix applications. Nitzberg and Fineberg [15]

presented an overview of raw UO bandwidth of typical parallel systems using synthetic workloads,

including the Paragon. Our investigations go beyond the study of the raw VO performance, to

mchde the interaction of VO with scalable computations. In specific, we study the impact of UO on

the overall performance of typical sparse matrix computations.

One successll way to enlarge the bandwidth of VO systems is to access the data before they

are actually required by the processing nodes in computations. The technique is generally known as

prefetching, and its application is strictly dependent on the application access patterns. Recently,

Arunachalam, Choudhary, and Rullman [An1961 describe the design and implementation of a

prefetching strategy and provide measurements and evaluation of the file system with and without the

prefetching capability. They found that, by using prefetching, a maximum speedup of7.7 could be

attained for 8 processing nodes and 8 VO nodes. Even if we also use prefetchg as a way of

2

Y

boosting YO bandwidth, some important aspects differentiate our work than the one performed by

Arunachalam et al. Thus instead ofusing variable delays as simulated load-balanced computations,

we use real applications, including one with inherent load-imbalances, such as the sparse matrix-

vector multiplication. Therefore, our research goal is to go beyond just measuring system's

capabilities, to test our VO bandwidth improving solutions and the response of the Paragon PFS in

complex real-life situations. We introduce techniques and methods to sigmficantly ease the VO

bottleneck through latency hiding and load balancing to a limit that can preserve the scalability

characteristics of the computations. Also, we base most of our experiments on the M-ASYNC file

access mode, proven to yield best performance [15,7, 161 and because of its suitability for MIMD-

type implementations. On the other hand, Arunachalam et al. based their tests on M-RECORD,

which is most suitable for SIMD implementations.

The remainder of this paper is st~~ctured as foIlows. In Section 2, we present the two Sparse

Matrix Applications (SMA) (compression and multiplication) used to study the performance of the

VO system In Section 3, we describe our experimental testbed, the parallel platform and the matrix

data set. In Section 4, we present the Paragon PFS file access modes and our YO latency hiding

methods. Finally, in Sections 5 and 6 we present our experimental results and conchlsions,

respectively.

2. Sparse Matrix Applications

Our purpose is to find appropriate solutions and techniques to enhance the VO performance

on parallel computers, for applications such as sparse matrix computations. Therefore, we

investigated the VO bottleneck for two typical Sparse Matrix Applications (SMA): sparse matrix

3

compression and sparse matrk-dense vector multiplication.

2.1 Sparse matrix compression

The quality of compression formats should be judged by considering a number of criteria,

including: the compression ratio (ie. the ratio between the sizes of the matrix in the compressed and

in the extended format, respectively), the availability of compressed matrix elements to participate

in efficient algorithmic constructions, and the possibility of monifling, extending, and regenerating

the original matrix Some of the most used sparse matrix compression techniques include the Scalar

m A C K [3,10, 111, HorowitZ [5,9], Vector ITPACK [121, ITPLUS [4, 101, and ITPER (ITPACK

permuted blocks) [6, IO]. There is no globally

accepted best storage technique. The selection of
2 0 5 0 0

8 3 0 7 0 I
I the compression format depends on the actual A = I O 6 2 0 1

distriiution of non-zero elements within the matrix

and on the application requirements. In our

9 0 0 1 0

10 7 0 0 2 1

eqeriments,weusedScalarITPACKcompression ~ [n z] = [2 5 8 3 7 6 2 1 9 1 7 21

ju[nz]=[l 3 1 2 4 2 3 5 1 4 2 5 1 format, given its suitability for general sparse

iu[N+l]=[l 3 6 9 11 1 3 1
pattern matrices. This compression technique yields

Figure 1. Example illustrating scalar good compression ratio and enables efficient

algorithmic constructions. lTPACK format

We *ate the Scalar ITPACK format through an example m Figure 1, in case of a matrix

stored row-wise. It stores values and infomation regarding the position within the matrix of the non-

zero elements mto three vectors, as follows: vector stores non-zero values; Yd vector stores their

4

Y

column indices; and 3'd vector stores indices of elements in 1" and Znd vectors corresponding to

beginning of rows.

2.2 Sparse matrix-dense vector multiplication

Additionally fiom the sparse matrix compression, we used the sparse matrix-dense vector

multiplication as scalable computation. The algorithm multiplies matrix elements compressed

Procedure 2: multiplication

INPUT:
Am, M] - matrix compacted according to the scalar ITPACK format:

a[nz] - contains all nz non-zero values ;
ja[nz] - contains the corresponding column indexes of all the elements in vector a[1;
ia(N+l] - contains the indices of elements in vector a[] that correspond to new rows.

xFr] - an M x 1 input vector;

OUTPUT:
y M - an N x 1 output vector.

ALGORITHM:
for (i = l , N)

tern-;
for (k = ia [i], ia[i+l] - 1)

endfor
y [i] =temp;

temp = temp + ap] * x [jap]];

endfor

Figure 2: Sparse matrix-dense vector multiplication algorithm

according to the Scalar ITPACK compression scheme (Figure 2) and it is considered a typical sparse

matrix multiplication scheme [6] .

5

3. Experimental testbed

3.1 The Paragon system

Our experiments were performed on an Intel Paragon parallel computer with 64 processing

nodes, among whom 56 are compute nodes. Each node is based on an Intel i860 processor, having

at least 16 MBytes of RAM on-board The underlying topology of this MIMD machine is a mesh that

enables up to 160 MByteds of inter-node communications bandwidth. Large files can be stored on

a Parallel File System (PFS), organized as a two disks system, each of them a RAID 3. File contents

are striped over disks with stripe sizes equal to 64 KBytes. Conceptually, the system combines h e -

grained parallelism within each RAID 3 with coarse-grained parallelism at PFS level. At the concrete

level, the system represents a multi-level striping implementation to achieve a better distniution of

load over YO nodes. We capture m Figure 3 the hierarchical structure of a Paragon PFS with two

YO nodes each one controlling a disk system.

I
DISK 0 DISK 1 Ir I

Figure 3. Hierarchical structure of a Paragon PFS with two disk systems

3.2 The matrix data

In our experiments, we use several sparse matrices selected fiom the Harwell-Boeing sparse

matrix collection [2,3]. We summarize the main characteristics of these matrices in Table 1. The

6

Harweli-Boeing collection is a set of benchmark matrices collected &om challenging practical

applications of typical computational problems. Both the User's Guide and the collection are available

on the Internet fiee of charge.

Table 1. Statistical data of sparse matrices selected from the Harwell-Boehg collection

Name

ORANI 678

PSMIGR 1

BCSSTK28

Type Order Non-zero's Sparsity

Unsymmetric 2529 90158 0.0 14

Unsymmetric, mostly block-diagonal 3 140 543 162 0.055

Svmmetric 4410 2 19024 0.011

Table 2. PFS fde access modes main characteristics

File pointer

independent,

multiple

single,
shared

File access policy

random access

first-come. first-served basis

atomicity ensured

first-come, first-served basis

access by order of issuing the

call

M_uMx

M-LOG

M-SYNC

M - RECORD

M - GLOBAL

M-ASYNC

single,

shared

multiple

single,
shared

independent,

multiple

synchronized access by node

number

concurrent access uppeunng to

have been done by node number

data read by one node and

broadcast to all others

random, concurrent access

non-atomic writes

Degree of

synchronization

small

medium

small

Typical

applications

redwrite on

disjoint areas

writing log files

round-robin data

redwrite

more efficient

round-robin data

redwrite

reading shared

data

complete

flexibility of

implementation

7

4. Parallel File System (PFS) fde access modes and YO latency hiding

4.1 Supported PFS file access modes on an Intel Paragon

The Intel Paragon supports the following PFS file access modes: M-UNIX, M - LOG,

M-SYNC, M - RECORD, M-GLOBAL, and M-ASYNC. The main differences consist of the way

the contents of the file pointer is maintained and the degree of file access synchronization.

in Table 2, we summarize the main characteristics of the PFS file access modes. We have

assumed the following interpretation for the degrees of inter-node synchronization:

1) small - only open and close calls are synchronizing;

2) medium - additionally, calls like fseek and eseek are synchronizing;

3) high - most or all calls are synchronizing, including the readwrite calls.

By synchronizing calls we understand two things. First, corresponding syncronizing calls

have to exist m the code run by all compute nodes in a compute partition. Second, the system

executes them m some particular way. Thus, if calls such as fopen, fclose, fseek, or eseek are

involved, d processors execute them at the same time, performing the same action (such as moving

the file pointer to a same file location). On the other hand, Zfiead orfivrite calls are involved, the

calls are scheduled based on node number and the operations are performed at file locations @en

by the node number and size of the read/write call.

Some of the file access modes have some typical applications. For example, the M-LOG

mode is most suitable for creating and maintaining log files, whereas M-GLOBAL has its best

application in implementing a variation of collective read of a file, when all nodes are reading the

same information f?om disk, but only one node is actually performing the read followed by a

broadcast of the read data through inter-node message-passing. Our implementations are aimed

at Setting a f%ir basis of performance comparison for all these modes rather than providing the most

suitable application for each of the parallel file access modes. A complete description of the PFS

file access modes can be found in the Paragon User's Guide manual [141.

The sparse matrices are uncompressed and resident on disk. Before compression and/or

computations, such as matrix umhplication, are performed, data have to be read into main memory,

Some of the PFS file access modes (M - LOG, M-SYNC, M-RECORD, and M-GLOBAL,) make

either all nodes truly share the same pointer or make the seek operations transparent to the user

(M-RECORD). All of these file access modes, with the exception of M-LOG, offer some means

of synchronizing the calling nodes. M LOG is designed for implementing log files, therefore the

access to the file is truly on a first-come, first-served basis, with single shared file pointer. Because

in our case the nodes have to read specific data fiom disk rather than to write on it, some file

pointer alignment information must be exchanged by the nodes. Each node has to be aware of the

index of the rows it processes to ensure the correctness of the results. In the case of M-SYNC and

M-RECORD file access modes, the access to the file is done by node number. Thus, for M-SYNC

accessing nodes are trUty synchronized by node number. M-RECORD is a special case: even if the

file pomter is distributed, compute nodes do not have fidl control on the contents of the file pointer

and fkek and eseek calls are synchronizing. Performing read-write is similar to M-SYNC, but the

access of nodes to the file just looks to have been by done by node number, but it actually is on a

first-come, first-served basis. To have this opportunity, additional constraints are imposed, such

that each node must perform the same type of operation in a readwrite session and use the same

b d e r length. For some applications, in which the file size is not evenly divisible by the number of

processors multiplied by the read-block size, errors may occur if these restrictions are not met and

9

make M - RECORD mode impractical One way of s o h g this problem of incompatibility between

the PFS characteristics and the application requirements is to artificially enlarge the size of the file

such that, in the read session, all nodes are fetching the same number of bytes. This anomaly is

corrected in the computations phase when fudge data are simply discarded.

In the case of M-UNIX and M-ASYNC modes, multiple file pointers have to be

appropriately maintained. As no synchronization restrictions are imposed, both these two file access

modes enable flexible scheduling of file access and. therefore, they support MIMD-type

implementations.

4.2 Additional latency hiding

A typical way of hiding the VO latency is the use of asynchronous read. Modem MlMD

machines have dedicated hardware facilities for achieving the message passing task and for

interfacing the VO devices. This architectural concept enables processing nodes to carry on their

computations without being directly involved in communications and VO tasks. Ideally, the fU

beneiit f?om an asynchronous'V0 call is attained when the VO operation has the same length as the

computations perfoxmed between two consecutive asynchronous calls. In such a case. YO is lily

overlapped with computations. Unfortunately, this is not always easy to reach in practice, and

application programs should make every effort to achieve the maximum possible degree of

overlapping.

Load-balancing is an important issue m computations and VO as well. The structure of the

Paragon PFS itself contributes decisively at ensuring an even distribution of load over VO nodes.

However, especdy for a PFS with a large number of VO nodes, the completion of some YO calls

10

can be delayed primarily because the PFS is a shared resource with other users. Therefore, some

compute nodes that posted the delayed calls can experience significant load imbalances. Moreover.

computations themselves can contribute and expand the existing load-imbalance. Thus, we perform

two common computations with sparse matrices: compression and the multiplication with a variable

number of vectors. As opposed to the compression, that does not raise special load-balancing

problems, the multiplication is typically a good example of a potential source for load-imbalances.

Additionally, the size of the multiplication and its associated challenges can be easily scaled by

changing the number of multiplying vectors.

We compare two approaches for allocating the data to compute nodes to solve the parallel

sparse matrix compression and multiplication:

(1) each node generates, based on its node index, the rows it reads. Thus, the fist node reads the

first n rows, the second node reads the next n, and so on. At the next read cycle, the fist node

reads rows: N*n, ..., (N+f) *n - I. As a rule, node j reads within read cycle i (ifit is the last read

cycle, some nodes may not read at a 4 and one node may read less) rows: N*i+j)*n, ...,

(iY*i+/+Z) %-1. Thus, each node reads disjoint areas fiom the file. The physical access to the file

is imposed by the selected PFS file access mode. The advantages are the following: the method

enables large size read sessions and the nodes extract the information about the read data based on

their node index. The main disadvantage of this method is that it does not attempt to evenly

distribute the load onto processing nodes. Based on the actual distribution of the data elements,

some nodes may take longer than others to process a particular subset of the matrix elements. We

call this approach, that is mainly a static allocation, the worker-worker approach (W-w). This

approach is aimed at sohing problems with no or with insignrficant load-imbalances.

11

(2) each node informs the major node when it is able to process new data (master-worker

approach M-W). As a principle, any worker that is ready to accept new data, sends a READY

message to the master node. If'the master node, that manages the allocation of rows to workers,

Stin has unprocessed rows to allocate, sends back a GO message in which includes the starting row

index and the number of allocated rows. Once the EOF is reached, the master node broadcasts a

STOP message. The algorithm efficiently mixes asynchronous message passing and YO calls with

computations for best performance. We present both the master and the corresponding worker

algorithms m Figure 4. This algorithm is a more elaborate alternative for potential sources of load-

imbalances.

One difference between the two approaches is the need for a coordinating master node in

the second approach. In the first approach, the indices of rows fetched and processed by each

compute node can be determined according to the node number of each processor. In a dynamic

allocation, a coordinator is neceSSary to arbitrate requests for more work fiom compute nodes and

keep track ofthe allocated row mdices and ofthe remaining work. A master node can be a service

node, vclhile the workers are compute nodes. The advantage of this procedure is that any delayed

node is not delaying the whole process. As the I/O calls and the associated computations generally

take longer to complete than the short message inter-change, the message passing that referees the

data allocation is carried on m the background. Therefore, there is no measurable penalty paid for

the communication between processing nodes (workers) and the managing node (master).

Whenever a master node is invoked in coordinating a parallel application, the concern that the

master node may become a serious bottleneck is raised. In this situation, the load associated with

the master node is minor as compared to the load allocated to compute nodes that deal both with

12

Algorithm: master
compute the number of VO reads
for (all VO reads)

receive a READY message from a worker
identify the node that sent the READY message
send back GO message with row identifiers

endfor
for (d processing nodes)

receive a READY message from a worker
identify the node that sent the READY message
send back STOP message with row identifiers

endfor

Algorithm: woricer
post an asynchronous receive for a STOP message
read asynchronously the first set of data based on its node index
post an asynchronous receive GO message
send READY message to master node
Terminate=FALSE
while not (Terminate)

for (: ; 1
if GO message received &om master node

post a new asynchronous receive GO message
send READY message to master node
break &om for loop

endif
if STOP message received

cancel GO receive message
TerminatFTRUE
break fiom for loop

endif
endfor
wait until previous YO read ends
if not (Terminate)

endif
perform computations on data previously read from disk

post a new asynchronous read from disk for next compute iteration

endwhile

Figure 4. Dynamic allocation of YO and computations

YO and computational tasks. Therefore, the major node is not impeding on the scalability of the

overall execution. To implement the dynamic (or Master-Worker) allocation, two memory b a e r s

13

may be awed. At any moment m the idkite for loop, while one buffer is being filled with data &om

disk, the other one, already containing data, is being used in the computations phase.

5. Experimental results

5.1 Performance measurements of the PFS f i e access modes

In this section, we compare the performance of the PFS file access modes available on an

Intel Paragon. A short preview at these results appeared in the Proceedings of the DCC'96 [7].

Suppose we solve the problem of compressing a sparse matrix, resident in extended format

on the hard disk. Computation and VO operations must be performed by a number of processors

grouped into a computing partition. The compression and, also, other computations, like the

matrix-vector multiplication, can be embedded in the dynamic allocation algorithm presented in

Figure 4 as the computation taking place at the worker node leveL

The purpose of our experiments is to show how computations and VO intensive applications

can be handled efficiently. .Therefore, we tested in our experiments all possible PFS file access

modes, and we compared their achieved performance. We respected some principles in designing

the compression process for implementations involving each of the PFS file access modes:

1) Each node reads an integer number of rows, as the compression is row-oriented. This generally

contradicts the constraint to read in integer number of stripe-sizes to achieve high performance.

We compromised on these issues, in the sense that each node reads at one time a number of rows

. x r h ~ e a m n m h \ ; n a A C;IP ;e n l r r n a ~ +.. +L r.,.+:mnl r n n A C;VP
WUVPCI VVLUUUA~U 3y.k ~ L U J C D L LU L U ~ up~uuai i r a u a=-.

2) Asynchronous message passing and asynchronous YO reads are efficiently used. They enable

14

the computations to occur concurrently with inter-node communications and parallel YO.

In Figure 5 , we present our results regarding the comparative performance evaluation of

the PFS file access modes. We have used 4 Merent read-sizes, multiple of the stripe-size (64

mytes): 1 (64 KBytes), 2 (128 KBytes), 4 (256 KBytes), and 6 (384 KBytes) stripe-sizes. Note

that our system has 2 YO nodes. The best overall performance is obtained with the M-ASYNC

PFS file access mode (Figure 5). The explanation is that all restrictions that apply to the other PFS

file access modes are lifted in this case. Good performance is achieved with M-GLOBAL with a

read-size equal to a stripe-size (Figure Sa). The explanation is that only one node is actually

reading the data. followed by the data replication on the inter-node communications network. thus

avoiding all contentions in accessing the disk. As each node processes the same amount of data

during one read cycle, the actual read-size is the basic read-size multiplied by the number of

processors. However, this feature becomes an aggravating issue once the read-size increases, as

it tends to trigger paging, thus diminishing the overall performance. This behavior is clearly

&strated when the read sizes are equal to multiple stripe-sizes (Figure 5 c, d). File access with

M-SYNC and M-LOG is h i w y synchronized. The reading with M-SYNC is done by node

number, while with M - LOG is performed on a first-come, first-served basis. Therefore, the degree

of concurrency allowed is much smaller. However, M-SYNC performs better than M-LOG,

because it enables a higher degree of concurrent access of nodes to the file. Similarly to M-LOG,

file access with M-UNIX is also performed on a first-come, first-served basis. Not surprisin&, its

performance is the worse compared to all other PFS file access modes, because it allows the least

concurrency to file access. Worth noting that a sigdicant penalty is paid because of the existence

of mdhple file pointers, that have to be maintained &iividually, compared to the single, shared file

15

-.Dj ' ,C-- -C-- -C-- -C-- -C-- - , - - - - - . - - - * - - - . 1 + * * + + ..___ + * .._._. +
e

4 s i

i
O ! e

1 2 3 4 s e 7 s a 10

Mmkrdpmum

a) Read size = STRIPE-SIZE = 64 KB

"1

c) Read sue = 2*STRIPE-SIZE*IO-NODES = 256 KB

b) Read size = STIUPE-SIZE*IO-NODES = 128 KB

d) Read sizr3*STRIPE_SiZE*IO-1YODES=384 KB

Figure 5. Compression and associated UO execution time for matrix PSMIGR 1

16

pointer modes. M - RECORD also yields better performance than M-SYNC because it allows a

higher degree of concurrent access to the file. M-ASYNC and M-UNIX are very similar in some

aspects, but they produce completely different results because of the lack of constraints in the

M-ASYNC case. A dramatic improvement is recorded for the M-ASYNC in the time to move the

file pointer. Thus, the total time to move the file pointer for the M-UNIX ranges between 3.7 and

16.7 seconds for the studied cases, representing kom less than 35% to up to more than 75% of the

whole YO cost. On the other hand, the same operation takes only tens of a second for

implementations using the M - ASYNC PFS file access mode and is negligible as compared to the

entire YO cost (less than 1% of the entire YO cost). To explain more thoroughly the way timing

results are made up, m Figure 6 we show the compression time results based on the M-ASYNC

mode detailed by YO and processing components for both M-UNIX and M-ASYNC modes. An

estimation of the overall execution time is:

For a read-block size equal to 64 KBytes, the read time is completely above the computations time.

Therefore, the overall execution time is imposed by the I/O performance. For a read-block size

equal to 384 KBytes and M - ASYNC mode, the overall results scale for a small number of

processors (y s 2), but &e IiO time becomes preponderant for iarge number of processors. This

behavior is due to the unscalable characteristics of the PFS that diminishes overall performance for

indlicient amounts of computations. The charts emphasize the scalability of the computation as

compared to the saturation of the YO performance. In Figure 6, we also illustrate another

interesting aspect: the cost of seeking overwhelms the cost for read for M-UNIX and large number

17

2 4

Read size: 64 KB

2

0
1 2 4

-m--

1 2 4
b..u-

Read size: 64 KB

1 2 4
conpr-

Stripe size: 384 KB Read size: 384 KB

e

Figure 6. Comparison of the structure of the overall execution time for iM-UM[x
and M-ASYNC

18

L

of processors.

5.2 Effect of the additional YO latency hiding

As previously shown, the VO bottleneck impacts directly on the overall performance.

Therefore, the application designer should use any available techniques that speed up the VO and/or

hide its latency. In Section 4.2, we present a method that uses dynamic allocation (the Master-

Worker approach) as a meaningfid attempt to achieve a better distribution of the work over

compute and VO nodes. The method aims at avoiding the ide times of both compute and YO

nodes due to any unevenness of the data distribution. In Figure 7, we compare the performance

obtained with the static and dynamic allocations for Merent read sizes. We show that the dynamic

allocation produces better performance m aIl6 cases. Once again, the improvements are not based

on a fister VO, but on a better use of allocations. In this section, our tests are based on operations,

such as the VO and compression, that, normally, do not raise special problems of load-balancing.

However, as the load on YO can generate fiom other sources than our job as well, the dynamic

allocation proves to be usem In Table 3, we capture some statistical data on this improvement.

The measured improvement due to dynamic allocation (the Master-Worker approach) is up to

19.79 %. In this case, load-balancing is aimed at smoothing sudden load-unevenness due to external

sources rather than internal ones, therefore it helps prevent loss of performance due to random

rather that persistent and systematic stimuli. We expect this technique to have an even larger and

more conclusive impact when allocated loads have various weights, such as some types of

computations invohhg sparse matrices. We M e r address this issue in Section 5.3.

19

c

'1,

a) Read size =Sl"E-SUE = 64 KB

Wl
I

0 ,
t a s 4 6 e 7 a e 1 0

NMb.rdproaron
I I

I wwd i , --..- lww -*-
lnrr 1

c) Read size =2* STRIPE-SIZE*IO-NODES = 256 KB

~ -

e) Read size 4* STRIPE-SIZE*IO-NODES = 512 KB

b) Read size = STRIPE-SIZE*IO-NODES = 128 KB

!

d) Read size=3*STRIPE-SIZE*IO-NODES=384 KB

0
1 ' I 4 5 e 7 I e 10

N w n b w d p m o a m

Figure 7. Comparison between the static and the dynamic allocations

20

c

Increase in

performance

Highest [%]

Lowest [%]

Table 3. Improvement of the performance with the dynamic allocation vs. static allocation

Read sizes

64 KB 128KB 256KB 384KB 512KB 640KB

15.97 6.49 7.53 10.25 5.04 19.79

1.5 0.4 0.15 0 1.16 0.16

5.3 Effect of the multiplication size on scalability and amortization of UO

As we previously stated, computations with high degree of inherent concurrency scale we4

compared to VO operations. To study the effect of the size of the problem on the overall

performance of computations and VO. we have increased the complexity of the computations part.

Thus, we have combined the compression of a sparse matrix with the multiplication of this matrix

(in the compressed format) with a number of dense vectors. The sparse matrix-dense vector

multxplication has two interesting effects. First, the operation itself raises load balancing problems,

as the computation load depends on the number of non-zero elements contained in each amount of

data read fiom disk by each node. Depending on the distribution of non-zeros per each row. the

variations of load can become non-negligible. Second, by varying the number of vectors, we can

conveniently m o w the ratio between the amounts of computations and I/O.

In Figure 8, we capture the interrelation among overall scalability, L’O, and amortization of

VO with increased computations. As expected, the overall results scale well as long as the scalable

computation part surpasses the VO part. Each of the curves in Figure 8 has a scalable segment and

a saturated one. One interesting result is that the amortization is achieved at an extremely

reasonable Size of the multiplication problem (vectors2 100). This is the direct outcome fiom the

21

10 - combmation of techniques used to increase

the performance of the YO itse& such as
.. *ztzL - - - - 0 - - - - - - *

a&?'-
&-. * .-..-.. * .-.____ + * .-..-.. * .-..-...

asynchronous read and dynamic allocation.

The conclusion to be drawn fiom these rpy

O-' results is that, ifthe YO operation can be 1 2 $ 4 5 e r # e o

overlapped (by using asynchronous calls) L.g.nd -.+- a-- -*- 4o-r*lp. I .-+.. n-- -+- irn-lru~lo 1

i with scalable computations, there exists

some size of the scalable operation for Figure 8. h p a c t of the Problem size On
scalability and YO amortization

which the overall results become scalable.

Read size: 128 KB

m r r 0- Q W R

Read size: 128 KB

Figure 9. Structure of the overall results for compression and multiplication

To show more cieariy how these resuits were obtained, in Figure 9 we detail the

components of the overall execution time. Thus, for 25 multiplying vectors, the time to perform

22

computations is above the time for L’O only for 4 compute nodes or less. As the amomt of

computations increases (100 vectors), the scalable computations cost surpasses the VO cost for the

entire range of 10 compute nodes. Thus, overall scalable performance can be obtained when an

unscalable operation, such as VO, can yield enough work to overlap with and completely hide

behind the scalable computations. Therefore, when two operations, among whom one is scalable

and the other one is unscalable and whose costs can overlap, pass the scalable characteristics of the

overwhelming operation cost to the entire process for a wide range of compute nodes.

To generate the results m Figure 8,

we used the dynamic allocation. We show

once again a comparison between the two

possible types of allocation, given the

increased interest due to the potential

load-balancing problems embedded into

the sparse matrix multiplication. In Figure

10, we plot the speed up results for YO,

compression, and multiplication with 125

vectors with both the static and dynamic

Figure 10. Comparison of the static (w-w) and
dynamic (m-w) allocations of YO, compression and
multiplication of I25 vectors for a 3140 x 3140 sparse
matrix

allocations. In addition to what was presented m Figure 6, the multiplication itself involves a

random amount of computations. Therefore, variations of processor behavior may occur, and the

dynamic allocation is aimed at covering the possible node delays. The differences in speed up

obtaicd *whg the stztk md djnax.uk a h a t i o n s are mere obvious fnr !arger nlmher of processors

because load-imbalances have a larger relative effect for smaller absolute work loads. The dynamic

23

(m-w) allocation yields a speed up of 9.405 for 10 nodes, compared to a speed up of 7.921

obtained with the static (w-w) allocation for the same number of processing elements. Figure 10

shows that, to a c h e high performance, it is not enough to make the scalable operation

preponderant, but also to ensure a high degree of scalability to the computations themselves by

appropriately choosing the load-balancing techniques according to the problem and execution

model.

6. Conclusions

We have studied the effect of the YO bottleneck on the performance of some basic sparse

Our experiments were matrix operations, such as the compression and the multiplication.

performed on an Intel Paragon MIMD machine. In these experiments, we used benchmark

matrices selected &om the Harwell-Boeing collection. We compared the performance of all

applicable PFS file access modes and we showed empirically the performance characteristics of each

of them m real-life applications. It was particularly shown that, although M-GLOBAL does better

for smaller collective reads, due to the ease in managing the single file pointer, it results in loss of

performance m larger read sizes, due to local memory size constraints. M-ASYNC, on the other

hand, can schedule the multiple file pointers intelligently, performing better than M-GLOBAL for

large YO read sizes. We introduced a dynamic allocation that takes place in the background of the

YO operation. We show that execution time improvements of 10% or more can be obtained with

this technique, and we expect even better behavior on more skewed data distributions. Also, we

studied the effect of scalable computation on hiding the VO bottleneck, and we showed that for

24

*

moderate sizes of scalable problems, the YO latency can be effectively hidden using a combination

of asynchronous calls and dynamic load balancing.

References

[11 Cheung, A. L., Reeves, A. P., Sparse data representation, Proceedings Scalable High

Performance Computing Conference, 1992.

[2] W I. S., S p s e matrix testproblem, ACM Transactions on Mathematical Software, Vol.

15, NO. 1, 1-14, 1989.

[3] Duff, I. S., Grimes, RG., Lewis, J. G., User's guide for the Harwell-Boeing Sparse Matrix

Collection, CERFACS Report TR/PA/92/86, 1992.

[4] Fernandes, P, Girdinio, P., A new storage scheme for an eflcient implementation of the sparse

matrix-vector product, Parallel Comp. 12 (1989) 327-333.

[5] Horowitq E., Sahnj, S., Furuhnentals of data structures, Computer Science Press, Rockville,

MD, 1983.

[6] Nastea, S. G., Frieder, O., El-Ghazawi, T., Sparse matrix multiplication on highly parallel

computers, Proceedings of the loth ht'l Conference on Control Systems and Computer Science.

Bucharest, Romania, 1995.

[7J Nastea, S. G., El--% T., Frieder, O., Parallel Input/Output Impact on Sparse Matrix

compression, Proceedings of the IEEE Data Compression Conference, Snowbird, Utah, 1996.

[8] P a o w G. V., Santangelo, P., A graphic tool for the structure of large sparse matrrces, IBM

T h-:nalParra~ AeC-wu nbpuiL, ICE-0034 IBM ECSEC Rome (I%S).

[9] Park, S. C., Draayer, I. P., Zheng, S. Q., Fast sparse matrix multiplication. Computer Physics

25

Communications, Vol. 70, 1992.

[101 Peters, A, Sparse matrix vector multiplication technique on the IBM 3090 VP, Parallel

Computing 17, 1991.

[111 Petiton, S., Saad, Y., Wu, K., Ferng, W., Basic Sparse matrix computations on the Chf-5,

International Journal of Modem Physics C vol. 4. No. 1, 63-83, 1993.

[121 Press, W. H, Flannexy, B. P., Tenkolski, S. A., Weterling, W. T., Numerical recipes. l7ze art

of scientifzc computing, Cambridge University Press, pp. 64-73, 1986.

[13] Rothberg, E., Schreber, R, Improved load balancing in parallel sparse Choleskz

factorization, "Supercomputing '94", Washington D.C., 1994.

[141 *** Intel Paragon User's Guide, 1995.

El51 Nitzberg, B., Fmeberg, S. A., Parallel VO on Highly Parallel Systems, Tutorial notes,

Proceedings "Supercomputing '94", Washington D. C., 1994.

E161 Anmachalan, M., Choudhary, A, Rdhuan, B., Implementation andevaluation of prefefching

in the Intel Paragon Parallel File System, Proceedings of the loth Int'LParallel Processing

Symposium, Honolulu, Hawaii, April 15-19, 1996.

26

NASA
Report Documentation Page

~ _____
. Report No.

- _ _ _ . _

2. Government Accession No. 3. Recipient's Catalog No.

- -

. Author($
Tarek A. El-Ghazawi
Gideon Frieder
A. James Clark

1. Performing Organization Name and Address
Department of Electrical Engineering and Computer Science
School of Engineering and Applied Science
The George Washington University
Washington, D.C. 20052 -~

2. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA Goddard Space Flight Center
Greenbelt, MD 20771

9. Security Classif. (of this report)
Unclassified

5. Performing Organization Code

20. Security Classif. (of this page)
Unclassified

3. Performing Organization Report No.

21. No. of Pages
52

10. Work Unit No.

22. Price

11. Contractor Grant No. NAS5-32337
USRA subcontract No. 5555- 1 8

13. Type of Report and Period Covered
August 1, 1993 - September 30, 1996

Final

~~

14. Sponsoring Agency Code

-

5. Supplementary Notes
This work was performed under a subcontract issued by

Universities Space Research Association
10227 Wincopin Circle, Suite 21 2
Columbia, MD 21044 Task 16

6. Abstract
Study of InpuffOutput Characteristics of NASA Earth and Space Science Applications, and Parallel InpuffOutput for
Sparse Matix Computations. Detailed below is the abstract for the first topic discussed.

This report is divided into three parts: Characteristics of the-MasPar Parallel I/O System, An Experimental

Inpuffoutput speed continues to present a performance bottleneck for high-performance computing
systems. This is because technology improves processor speed, memory speed and capacity, and
disk capacity at a much higher rate. Developments in I10 architecture have been attempting to reduce
this performance gap. The MasPar I/O architecture includes many interesting features. This work
presents an experimental study of the dynamic characteristics of the MasPar MP-1 and MP-2 testbeds
at NASA GSFC. The results have revealed many strengths as well as areas for potential improvements
and are helpful to software developers, systems managers, and system designers.

7. Key Words (Suggested by Author@)) 18. Distribution Statement

Unclassified--Unlimited

NASA Form 1626 Od 86

